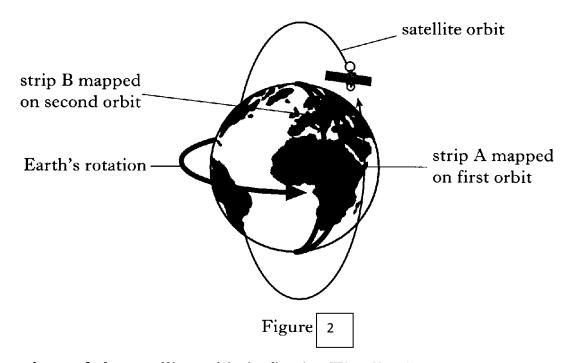
CfE Advanced Higher Physics

Rotational Motion & Astrophysics Past Paper Homework

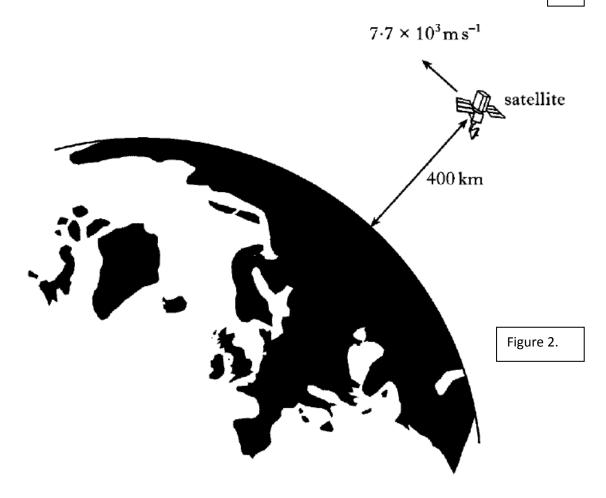

4. Gravitation

- 1. The gravitational pull of the Earth keeps a satellite in a circular orbit.
 - (a) Show that for an orbit of radius r the period T is given by

$$T = 2\pi \sqrt{\frac{r^3}{GM_E}}$$

where the symbols have their usual meanings.

(b) A polar orbiting satellite is used to map the Earth by photographing strips of the surface as it orbits, as shown in Figure 1


The plane of the satellite orbit is fixed. The Earth rotates and so the satellite maps a different strip on each orbit.

- (i) The satellite orbits at a height of 80 km above the surface of the Earth. Assuming the Earth to be spherical, show that the period of the orbit is approximately 86 minutes.
- (ii) The Earth's angular velocity is $7 \cdot 3 \times 10^{-5} \text{ rad s}^{-1}$. Calculate the distance along the equator between strips A and B which are mapped on consecutive orbits.

(a) (i) A satellite orbits a planet of mass M. The orbital radius of the satellite is R and the orbital period is T.
Show that

$$T^2 = \frac{4\pi^2 R^3}{GM}.$$

- (ii) Calculate the time taken by the Moon to make one complete orbit of the Earth.
- (b) A satellite orbits 400 km above the Earth's surface as shown in Figure 2

The satellite has a mass of 900 kg and a speed of $7.7 \times 10^3 \,\mathrm{m\,s^{-1}}$.

- (i) Show that the potential energy of the satellite is -5.3×10^{10} J.
- (ii) Calculate the total energy of the satellite.

- 3. (a) (i) State what is meant by gravitational field strength.
 - (ii) The gravitational field strength at the surface of Mars is 3.7 N kg^{-1} . The radius of Mars is $3.4 \times 10^3 \text{km}$.
 - (A) Use Newton's universal law of gravitation to show that the mass of Mars is given by the equation

$$M=\frac{gr^2}{G}$$

where the symbols have their usual meaning.

- (B) Calculate the mass of Mars.
- (b) A spacecraft of mass 100 kg is in circular orbit 300 km above the surface of Mars.
 - (i) Show that the force exerted by Mars on the spacecraft is 3.1×10^2 N.
 - (ii) Calculate the period of the spacecraft's orbit.
- **4**. (a) The Moon orbits the Earth due to the gravitational force between them.
 - (i) Calculate the magnitude of the gravitational force between the Earth and the Moon.
 - (ii) Hence calculate the tangential speed of the Moon in its orbit around the Earth.
 - (iii) Define the term gravitational potential at a point in space.
 - (iv) Calculate the potential energy of the Moon in its orbit.
 - (v) Hence calculate the total energy of the Moon in its orbit.
 - (b) (i) Derive an expression for the escape velocity from the surface of an astronomical body.
 - (ii) Calculate the escape velocity from the surface of the Moon.

Total Marks